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Abstract
We have studied the effect of confinement and correlations on the plasmon dispersion in an
atom-scale metallic wire by determining the electron density response function. The wire
electrons are modelled as comprising a quasi-one-dimensional homogeneous gas, with different
transverse confinement models. The response function is calculated by including electron
correlations beyond the random-phase approximation within the self-consistent mean-field
approach of Singwi et al (1968 Phys. Rev. 176 589). The plasmon dispersion results are found
to be in very good agreement with the recent electron-energy-loss spectroscopy measurements
by Nagao et al (2006 Phys. Rev. Lett. 97 116802). However, our predictions are found to
depend strongly on the nature of the confinement model, the structure of the one-dimensional
electronic band and the electron effective mass, implying a crucial role for the wire structure.

1. Introduction

The study of elementary electronic excitations in one-
dimensional (1D) electron systems has generated considerable
theoretical [1–7] as well as experimental [8–13] interest during
the last two decades. Here, the electrons are free to move in one
direction whereas their transverse motion is restricted quantum
mechanically. Advances in material fabrication technology
at the nano-scale have enabled the realization of 1D electron
channels with a very fine control on the system parameters.
The early [14] 1D electron systems were tailored by providing
confinement to electrons along one of the two lateral directions
in a two-dimensional (2D) electron gas formed at the interface
of a semiconductor quantum-well structure; for example,
the AlGaAs–GaAs–AlGaAs quantum well. In this way,
1D electron channels with (lateral) width of the order of
100 nm were created. At the experimentally accessible
in-plane electron densities, however, the electrons occupied
the higher energy subbands along the confinement direction.
The excitation spectrum of such electron systems has been
measured through inelastic light scattering experiments [9],
which have confirmed the theoretical prediction [3, 4] of
the excitation of both the intra- and inter-subband plasmons.
Rather, quantitative agreement is found with a theoretical

calculation based on the random-phase approximation (RPA).
This agreement is quite understandable, as the experimental
wire parameters correspond to a weakly coupled 1D electron
system and therefore correlation effects are not expected to be
significant.

However, recently, narrower 1D electron channels
(∼nm) have been realized in atomic-scale metallic quantum
wires [15–19] grown on a semiconductor surface. Among
these, a single chain of Au atoms anchored rigidly to a
step on a highly stepped Si(557)–Au surface has attracted
much attention. Due to reduced channel width, the chain
electrons are expected to occupy only the lowest energy
subband for their transverse motion, and consequently they are
believed to map almost exactly a 1D electron system [11, 12].
But angle-resolved photoemission experiments [16, 17] have
revealed a non-trivial electronic band structure of the Au chain,
particularly the splitting of the 1D conduction band into two
peaks near the Fermi level. Right from its realization, this
electron system has been providing interesting puzzles like the
assignment [15] of band splitting to the Luttinger liquid [20]
behaviour of 1D electrons (i.e. the spin–charge separation),
metallic behaviour [17] despite an even number of electrons
per unit cell, a metal–insulator transition [12, 18] with lowering
of temperature, etc. However, recent ab initio calculations [21]
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have shown that it is the spin–orbit (SO) coupling that causes
splitting of the conduction band into the two 1D bands, thus
ruling out the reported manifestation [15] of spin–charge
separation. Very recently, Nagao et al [11, 12] have measured
the plasmon dispersion in the Au chain on the Si(557)–
Au surface by using electron-energy-loss spectroscopy. The
measured plasmon has been found to exhibit 1D and metallic
characteristics. Motivated directly by these measurements,
we present4 in this work a theoretical calculation of plasmon
excitation energy for the Au metallic wire. We employ
the dielectric formulation [22] wherein the poles of the
density–density response function yield the plasmon excitation
energy. The density response function is calculated within
the framework of the generalized self-consistent mean-field
approximation. We specifically investigate the dependence
of plasmon energy on the nature of transverse confinement,
electron correlations and structure of the 1D electronic band.
Our results are compared directly with the experimental data
of Nagao et al [11].

The rest of the paper is organized as follows: in section 2,
the wire model is presented with special emphasis on the effect
of the confinement model on the effective electron–electron
(e–e) interaction potential. Section 3 contains a brief account
of the theoretical formalism. The results and discussion are
presented in section 4. The paper is concluded in section 5.

2. Wire model

The x-ray diffraction study of the stepped Si(557)–Au surface
by Robinson et al [19] has revealed (see figure 3 of [19])
that each terrace on the Si surface has a width of ∼1.9 nm
and holds a single Au chain in its middle, along with the
adatom (Si) row and the step edge. However, we ignore here
the inter-chain coupling as the inter-chain spacing is about
four times the average intra-chain electron separation (∼a∗

0
is the effective Bohr atomic radius). According to recent ab
initio calculations [21], the electronic band associated with
the Au chain develops appreciable (∼0.3 eV) SO-splitting
near the Fermi level, and both the bands are metallic. In
contrast, Ahn et al [18] have deduced through angle-resolved
photoemission measurements that only one band is metallic at
room temperature. In our study, we shall consider both the
single- and two-metallic band situations.

We model the Au chain as a quasi-1D homogeneous
gas of electrons (with band effective mass m∗) embedded
in a rigid positive charge background to maintain electrical
neutrality. The motion of electrons is free along the wire axis
(say the x axis) while it is confined quantum mechanically in
the transverse plane (i.e. the y–z plane). Realizing that the
wire has finite width, we assume that the transverse motion
is confined by a 2D potential Vc(y, z) symmetric about the x
axis. The confinement is supposed to be sufficiently strong
that the electrons occupy only the lowest energy subband for

4 Very preliminary results on electron interaction potential and plasmon
excitations were submitted for presentation at the 54th DAE Solid State
Physics Symposium held at M S University of Baroda (India) in December
2009.

the transverse motion. The one-electron wavefunction is then
of the form

ψ(x,R) = L−1/2 eιqxφ(R), (1)

where L denotes the wire length and φ(R) the transverse part
of the total wavefunction (R ≡ y, z). Accordingly, the Fourier
transform of the effective e–e interaction potential is given by

V (q) = e2

ε0

∫ ∞

−∞
d(x − x ′)eιq(x−x′ )

×
∫ ∫

dR dR′ |φ(R)|2|φ(R′)|2√
(x − x ′)2 + (|R − R′|)2 , (2)

with ε0 being the dielectric constant of the substrate material.
To see the role of the nature of confinement, we consider some
different confinement models developed in literature.

(I) Harmonic confinement in the y–z plane [1]: here,
Vc(R) = h̄2 R2/(8m∗b4), with b being the wire
width; hereafter, we chose a system of units in
which h̄ = 1. In the lowest energy subband,
φ(R) = (2πb2)−1/2 exp(−R2/4b2), and the integral (2)
is evaluated analytically to give V (q) as

V (q) = e2

ε0
exp(q2b2)E1(q2b2), (3)

where E1(x) is the exponential–integral function.
(II) Infinite square-well confinement in the y–z plane [23]: in

this case, V (q) has to be obtained numerically as

V (q) = 2e2

ε0

∫ a

0
dy

∫ a

0
dy ′

∫ a

0
dz

∫ a

0
dz′ |φ(y, z)|2

× |φ(y ′, z′)|2 K0(q
√
(y − y ′)2 + (z − z ′)2), (4)

with φ(y, z) = (2/a) sin(πy/a) sin(πz/a), K0(x) the
zeroth-order modified Bessel function of the second kind,
and a the width of the square well.

(III) Infinite square-well confinement in the y direction and an
optimized wavefunction ζ(z) in the z direction [2]: now,
φ(y, z) = (2/a)1/2 sin(πy/a)ζ(z) in integral (4), with z
integral from 0 to ∞; ζ(z) = (β3/2)1/2z exp(−βz/2),
with β = 3/〈z0〉 being a variational parameter and 〈z0〉
the average wire width along the z direction. This form
of ζ(z) was originally used by Stern and Howard [24] to
describe the width of a 2D electron gas in a semiconductor
quantum well.

(IV) Harmonic confinement in the y direction and
√
δ(z)

wavefunction in the z direction [25]: for this model, V (q)
can be obtained analytically as

V (q) = e2

ε0
exp(q2b2/4)K0(q

2b2/4). (5)

(V) Infinite square-well confinement in the y direction and√
δ(z) wavefunction in the z direction [3]: in this case,

V (q) is given by

V (q) = 8e2

ε0a2

∫ a

0
dy

∫ a

0
dy ′ sin2(πy/a)

× sin2(πy ′/a)K0(q|y − y ′|). (6)
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Figure 1. The effective electron–electron interaction potential V (q)
versus wavenumber q for different confinement models. The curves
labelled as 1, 2, 3, 4 and 5 correspond, respectively, to the five
confinement models described in the text. The inset depicts V (q) in
the small q region with curves labelled in the same way as in the
main panel; the results of models III and IV are almost
indistinguishable.

In figure 1, we compare V (q) for the above confinement
models by taking b = 0.4 nm and r∗

s = 0.35; r∗
s is the

(effective) coupling parameter which is related to the linear
electron number density n as r∗

s = 1/(2na∗
0), with a∗

0 =
ε0/(m∗e2). The square-well width a (in models II, III and
V) and the average width 〈z0〉 (in model III) are taken to be
equal to b. Evidently, V (q) depends strongly on the nature
of the confinement potential. The square-well confinement
results in somewhat harder e–e interaction compared to the
harmonic case. Also, taking a

√
δ(z)-type wavefunction,

which is equivalent to the assumption of zero wire width in
the z direction, results in a much harder interaction potential.
Further, it is clear from the inset of figure 1 that V (q)
has significant dependence on the confinement model over
the wavevector range that is currently accessible to inelastic
scattering experiments. This indicates that the choice of
confinement model may depend on the fabricated 1D structure
and it should be crucial in the theoretical description of the
electronic properties of quantum wires. Its effect on plasmon
dispersion shall be examined in section 4.

Although Nagao et al [11] have measured plasmon
dispersion at room temperature, we assume here that the
electron system is at absolute zero temperature. This
assumption seems to be quite reasonable, as for the Au
chain kBT/EF ∼ O(10−2) at T = 300 K; EF is the 1D
Fermi energy. Under these conditions, the wire model is
characterized completely by the coupling parameter r∗

s and the
wire width b.

3. Theoretical formalism

We use the dielectric formulation, where the density response
function χ(q, ω) (which describes the response of electrons
to a weak space–time dependent external longitudinal electric
potential) constitutes a quantity of central importance. The

poles of χ(q, ω) yield directly the plasmon excitation energy.
However, the many-body nature of the system forbids exact
calculation of χ(q, ω). We determine χ(q, ω) by employing
the generalized mean-field approximation [22] (within the
linear response framework) and χ(q, ω) is given as

χ(q, ω) = χ0(q, ω)

1 − V (q)[1 − G(q)]χ0(q, ω)
, (7)

where

χ0(q, ω) = m∗gs

2πq
ln

{
ω2 − (qkF/m∗ − q2/2m∗)2

ω2 − (qkF/m∗ + q2/2m∗)2

}
, (8)

is the (zero temperature) free electron density response
function (the so-called 1D Lindhard function) and G(q) is
the local-field correction (LFC) factor, which describes the
modification of V (q) due to exchange–correlation effects.
Here, gs is the spin degeneracy factor and kF = πn/gs is the
1D Fermi wavevector. Setting G(q) = 0 corresponds to the
RPA. We use the self-consistent mean-field approximation of
Singwi, Tosi, Land and Sjölander (STLS) [26] to deal with the
electron correlation effects. The STLS approach, developed
originally for a three-dimensional electron system [26], has
been generalized in the literature to study the 2D [27] and
1D [1] electron systems. In this approach, G(q) is given in
terms of the static density structure factor S(q) and for a quasi-
1D system it is given as

G(q) = − 1

n

∫ ∞

−∞
dq ′

2π

q ′V (q ′)
qV (q)

[S(|q − q′|)− 1]. (9)

In turn, S(q) is related to the imaginary part of χ(q, ω) through
the fluctuation–dissipation theorem as

S(q) = − 1

πn

∫ ∞

0
dω Imχ(q, ω). (10)

Evidently, the density response function χ(q, ω) can only be
determined numerically from the self-consistent solution of
equations (7), (9) and (10).

The plasmon excitation energy ωp(q) is obtained readily
from the poles of equation (7) as

ωp(q) =
√
ω2− − ω2+eA(q)

1 − eA(q)
, (11)

with A(q) = 2πq/[m∗gsV (q){1 − G(q)}] and ω± =
(q2/2 ± qkF)/m∗. |ω−| and ω+ correspond, respectively, to
the lower and upper boundary of the (single) electron–hole
pair continuum. The numerical results of ωp(q) are given in
section 4.

4. Results and discussion

The calculation of ωp(q) requires the LFC factor G(q), which
is obtained numerically by solving the set of equations (7),
(9) and (10) in a self-consistent manner. We accepted the
solution when convergence in the results of G(q) was better
than 0.0001% at each q in the chosen grid of q points. To
enable a direct comparison with the experimental data of

3
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Figure 2. The plasmon energy ωp(q) versus wavenumber q in the
STLS approach at indicated wire parameters. The symbols are the
experimental data of Nagao et al [11] for electron beams having
incident energy 45 eV ( , �) and 35 eV (•). The thick dash–dotted
lines mark the boundary of the electron–hole pair continuum at
m∗ = 0.56m0.

Nagao et al [11], we use wire parameters appropriate to the
Au chain on the stepped Si(557) surface: ε0 = (1 + εSi)/2,
with εSi = 11.5, kF = 4.1 nm−1 [17] (the average of the kF

values of the two 1D bands, namely 3.8 and 4.4 nm−1) and
b = 0.4 nm. Taking the spin degeneracy parameter gs = 1
corresponds to a situation where only one spin component is
present in each of the two SO-split 1D bands and one of the
bands is insulating. gs = 2 means that both of the SO-split
1D bands are metallic and they are assumed to be degenerate,
or equivalently there is no SO-splitting of the 1D band. In
the latter situation, the number of active electrons is therefore
exactly twice that in the former. At fixed kF (i.e. n) and b,
the calculated ωp(q) is found to have strong dependence on the

structure of the 1D band (i.e. gs), the electron effective mass m∗
and the confinement model. In our calculation, m∗ is treated as
a fit parameter in order to see whether a close agreement can
be obtained between theory and experiment.

Figure 2 shows the ωp(q) results for gs = 1 and 2 by
taking the 2D harmonic confinement model. The dispersion
curve for gs = 1 exhibits very good agreement with the
experiment for m∗ = 0.52m0—a value close to 0.45m0

determined by photoelectron spectroscopy (PES) [17]; m0

is the free electron mass. For this choice of m∗ and gs,
a∗

0 = 0.64 nm and r∗
s = 0.6. However, the corresponding

gs = 2 curve matches the experimental data only at small
q (<0.07 Å

−1
), and an overall good agreement is found at a

somewhat higher effective mass of 0.56m0. But, our results
for ωp(q) are quite sensitive to the choice of confinement
model (see figures 3(a) and (b)), except for models III and IV
where ωp(q) almost overlap due to the very small difference
between respective V (q)s (see inset of figure 1). Notably,
ωp(q) shows a blue-shift as the effective e–e potential becomes
harder (see figure 1) due to increased transverse confinement.
One may also note that the confinement effect is relatively
more pronounced for gs = 2. By choosing a sufficiently
larger m∗, ωp(q) for confinement models (II–V) can also be
brought closer to the experimental data. Obviously, these m∗
deviate more from the PES result, with model V showing the
maximum deviation; here m∗ ∼ 0.8m0 and 0.56m0 for gs = 2
and 1, respectively. Overall, we note that the 2D harmonic
confinement model provides a reasonably good description of
the transverse width of the Au chain. Our result that the best
fit value of m∗ for gs = 1 has the minimum deviation (∼15%)
from the PES experiment seems to suggest that plasmons in
the Au chain correspond to one of the SO-split 1D bands.
The small departure of our m∗ from the PES experiment could
be because of the reason that the effective mass for plasmons
embodies the effect of e–e correlations in addition to the band
effective mass.

Figure 3. The dependence of the plasmon dispersion relation on the confinement model for gs = 2 (in panel (a)) and 1 (in panel (b)) at
indicated wire parameters in the STLS and RPA theories. The curves from bottom to top correspond to confinement models I, IV, II and V,
respectively. The symbols have the same meaning as in figure 2. In panel (b), curves for models II and V overlap.
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Figure 4. The local-field correction factor G(q) versus wavenumber
q at indicated wire parameters for different confinement models.
Solid and dashed curves represent, respectively, the results for gs = 1
and 2. The curves from bottom to top correspond to the confinement
models I, IV, II and V, respectively.

To elucidate the role of exchange–correlations, we have
compared in figures 3(a) and (b) our results for ωp(q) with
the RPA. Apparently, the inclusion of correlations beyond
RPA causes a red-shift in ωp(q), and the shift increases
monotonically with q . As an interesting result, the magnitude
of the shift is seen to depend upon the confinement model and
the gs parameter. In particular we note that the harder the
e–e interaction potential (see figure 1), the greater the red-
shift in ωp(q). In other words, the stronger the confinement,
the more pronounced is the effect of exchange–correlations
on ωp(q). This result is explicitly revealed in the behaviour
of the LFC factor G(q), plotted in figure 4 for different
confinement models. Clearly, G(q) shows considerable growth
with increasing confinement of the transverse motion. Also,
as expected, G(q) is greater for the case of gs = 1. Thus,
we find that depending upon the nature of confinement the
exchange–correlations in 1D may become quite appreciable
even though the coupling parameter r∗

s corresponds to a high
density electron gas. This is an important finding of our
study as the analogous 2D [28] and 3D [29] systems reveal
pronounced correlations at much higher r∗

s .
In figure 5, we illustrate the dependence of ωp(q) on

the wire width b by taking gs = 1, m∗ = 0.52m0,
kF = 4.1 nm−1 and the 2D harmonic confinement model.
ωp(q) is seen to depend weakly on b. Even by taking b as
large as the width of the terrace (∼1.9 nm) of the stepped
Si(557) surface, ωp(q) remains reasonably close (within the
experimental error) to the experimental data. Reduction in
b results in stronger confinement, and consequently ωp(q)
exhibits a mild blue-shift. Although not shown, this shift is
found to be quite appreciable (particularly when b/r∗

s < 1)
in the RPA. This difference arises due to the fact that the
electron correlations, which are ignored completely in the
RPA, build up with decreasing b/r∗

s and they cause a red-
shift in ωp(q), with the result that the confinement-induced

Figure 5. The dependence of the plasmon dispersion relation on the
wire width b. The curves from bottom to top correspond to
b = 2 nm, 1 nm and 0.4 nm, respectively. The symbols have the
same meaning as in figure 2.

Figure 6. The dependence of the plasmon dispersion relation on the
coupling parameter r ∗

s at indicated wire parameters in the STLS
(solid lines) and RPA (dashed lines) theories. The thick dash–dotted
lines represent the boundaries of the electron–hole pair continuum at
r ∗

s = 3. The curves from bottom to top correspond to r ∗
s = 3, 2, 1

and 0.6, respectively.

blue-shift is compensated to a large extent by the correlation-
induced red-shift. Qualitatively, the same reasoning explains
why the STLS ωp(q) depends weakly on the confinement
model when gs = 1 (see figures 3 and 4).

Although the electron density n is fixed for the Au chain,
we depict in figure 6 the impact of r∗

s on ωp(q) at gs =
1, m∗ = 0.52m0 and b = 0.4 nm for the 2D harmonic
confinement model. Increase in r∗

s results in suppression of
ωp(q), thus implying that less energy is required to excite
a plasmon in a strongly coupled electron system. Also,
comparison with the RPA shows that the exchange–correlation
effects grow in strength with increasing r∗

s . Further, we note

5
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that the plasmon excitation merges with the (single) electron–
hole pair continuum (plotted for r∗

s = 3 in figure 6) at a
critical wavevector qc whose value decreases with the inclusion
of electron correlations. However, the STLS approach (of
course, the RPA also) does not account for the experimentally
reported [11] damping of plasmons for q < qc. Such damping
may arise from the plasmon decay into two or more electron–
hole pair excitations.

5. Conclusions

In conclusion, the 1D electron gas model with proper
consideration of the transverse width serves as a good
approximation for theoretical description of the electronic
excitation spectrum of an atom-scale metallic wire. The
plasmon energy ωp(q) is found to depend strongly on the
confinement model, the electron effective mass, the nature
of the 1D electronic band and the coupling parameter r∗

s .
The 2D harmonic confinement model is found to provide
very good agreement with the experimental data of Nagao
et al. Our study reveals that plasmons in the Au chain
represent the excitation of electrons in one of the SO-split
1D energy bands. Further, we find that for the 2D harmonic
model the exchange–correlation effects are not significant at
experimentally accessible r∗

s and b. However, their influence
grows with increasing confinement and/or increasing r∗

s /b, and
they are found to cause a noticeable red-shift with respect to
the RPA ωp(q). This implies that in 1D the correlation effects
may become pronounced already at smaller r∗

s values due
to strong transverse confinement. Thus, our study explicitly
demonstrates that the plasmons in an atom-scale metallic
wire should depend on details of the wire structure. This
finding may be useful in tuning of 1D plasmons, and hence
in fabrication of 1D plasmonic devices.
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